On the Privacy Preserving Properties of Random Data Perturbation Techniques
نویسندگان
چکیده
Privacy is becoming an increasingly important issue in many data mining applications. This has triggered the development of many privacy-preserving data mining techniques. A large fraction of them use randomized data distortion techniques to mask the data for preserving the privacy of sensitive data. This methodology attempts to hide the sensitive data by randomly modifying the data values often using additive noise. This paper questions the utility of the random value distortion technique in privacy preservation. The paper notes that random objects (particularly random matrices) have “predictable” structures in the spectral domain and it develops a random matrix-based spectral filtering technique to retrieve original data from the dataset distorted by adding random values. The paper presents the theoretical foundation of this filtering method and extensive experimental results to demonstrate that in many cases random data distortion preserve very little data privacy.
منابع مشابه
On Random Additive Perturbation for Privacy Preserving Data Mining
Title of Thesis: On Random Additive Perturbation for Privacy Preserving Data Mining Author: Souptik Datta, Master of Science, 2004 Thesis directed by: Dr. Hillol Kargupta, Associate Professor Department of Computer Science and Electrical Engineering Privacy is becoming an increasingly important issue in many data mining applications. This has triggered the development of many privacy-preserving...
متن کاملAn Improvement of Privacy-Preserving Scheme Based on Random Substitutions
Data perturbation techniques are one of the most popular models for privacy-preserving data mining due to their practical utility [1]. In a typical data perturbation, before the data owner publishes the data, they randomly change the data in certain way to disguise the private information while preserving some statistical properties for obtaining meaningful data mining models. Agrawal and Harit...
متن کاملA Random Rotation Perturbation Approach to Privacy Preserving Data Classification
This paper presents a random rotation perturbation approach for privacy preserving data classification. Concretely, we identify the importance of classification-specific information with respect to the loss of information factor, and present a random rotation perturbation framework for privacy preserving data classification. Our approach has two unique characteristics. First, we identify that m...
متن کاملTowards Attack-Resilient Geometric Data Perturbation
Data perturbation is a popular technique for privacypreserving data mining. The major challenge of data perturbation is balancing privacy protection and data quality, which are normally considered as a pair of contradictive factors. We propose that selectively preserving only the task/model specific information in perturbation would improve the balance. Geometric data perturbation, consisting o...
متن کاملPrivacy-Preserving Collaborative Association Rule Mining
In recent times, the development of privacy technologies has promoted the speed of research on privacy-preserving collaborative data mining. People borrowed the ideas of secure multi-party computation and developed secure multi-party protocols to deal with privacy-preserving collaborative data mining problems. Random perturbation was also identified to be an efficient estimation technique to so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003